Qt Slot Function Thread

This page describes the use of signals and slots in Qt for Python.The emphasis is on illustrating the use of so-called new-style signals and slots, although the traditional syntax is also given as a reference.

The main goal of this new-style is to provide a more Pythonic syntax to Python programmers.

To call a slot (or any invokablemethod) in another thread, place that call in the target thread's event loop. This lets the target thread finish its current task before the slot starts running, while the original thread continues running in parallel. To place an invocation in an event loop, make a.

Some times you see a signal is emitted in sender thread but connected slot doesn't called (in other words it doesn't receive signal), you have asked about it and finaly got that the connection type Qt::DirectConnection would fix it, so the problem found and everything is ok. A short history. Long long ago, subclass QThread and reimplement its run function is the only recommended way of using QThread. This is rather intuitive and easy to used. But when SLOTS and Qt event loop are used in the worker thread, some users do it wro. A call to inmain blocks the calling thread until the Qt event loop can process our message, execute the specified method and return the result. For situations where you don’t wait to wait for the result, or you wish to do some other processing while waiting for the result, QtUtils provides the inmainlater function. This works in the same way as inmain, but returns a reference to a Python. The code inside the Worker's slot would then execute in a separate thread. However, you are free to connect the Worker's slots to any signal, from any object, in any thread. It is safe to connect signals and slots across different threads, thanks to a mechanism called queued connections.

  • 2New syntax: Signal() and Slot()

Traditional syntax: SIGNAL () and SLOT()

QtCore.SIGNAL() and QtCore.SLOT() macros allow Python to interface with Qt signal and slot delivery mechanisms.This is the old way of using signals and slots.

The example below uses the well known clicked signal from a QPushButton.The connect method has a non python-friendly syntax.It is necessary to inform the object, its signal (via macro) and a slot to be connected to.

New syntax: Signal() and Slot()

The new-style uses a different syntax to create and to connect signals and slots.The previous example could be rewritten as:

Using QtCore.Signal()

Signals can be defined using the QtCore.Signal() class.Python types and C types can be passed as parameters to it.If you need to overload it just pass the types as tuples or lists.

In addition to that, it can receive also a named argument name that defines the signal name.If nothing is passed as name then the new signal will have the same name as the variable that it is being assigned to.

The Examples section below has a collection of examples on the use of QtCore.Signal().

Note: Signals should be defined only within classes inheriting from QObject.This way the signal information is added to the class QMetaObject structure.

Using QtCore.Slot()

Slots are assigned and overloaded using the decorator QtCore.Slot().Again, to define a signature just pass the types like the QtCore.Signal() class.Unlike the Signal() class, to overload a function, you don't pass every variation as tuple or list.Instead, you have to define a new decorator for every different signature.The examples section below will make it clearer.

Another difference is about its keywords.Slot() accepts a name and a result.The result keyword defines the type that will be returned and can be a C or Python type.name behaves the same way as in Signal().If nothing is passed as name then the new slot will have the same name as the function that is being decorated.

Examples

The examples below illustrate how to define and connect signals and slots in PySide2.Both basic connections and more complex examples are given.

  • Hello World example: the basic example, showing how to connect a signal to a slot without any parameters.
  • Next, some arguments are added. This is a modified Hello World version. Some arguments are added to the slot and a new signal is created.
  • Add some overloads. A small modification of the previous example, now with overloaded decorators.
  • An example with slot overloads and more complicated signal connections and emissions (note that when passing arguments to a signal you use '[]'):
  • An example of an object method emitting a signal:
  • An example of a signal emitted from another QThread:
  • Signals are runtime objects owned by instances, they are not class attributes:
Retrieved from 'https://wiki.qt.io/index.php?title=Qt_for_Python_Signals_and_Slots&oldid=35927'
Home · All Classes · Modules

The QThread class provides a platform-independent way to managethreads. More...

Inherits QObject.

Types

  • enum Priority { IdlePriority, LowestPriority, LowPriority, NormalPriority, ..., InheritPriority }

Methods

  • int exec_ (self)
  • bool isFinished (self)
  • Priority priority (self)
  • run (self)
  • setStackSize (self, int stackSize)
  • start (self, Priority priority = QThread.InheritPriority)
  • bool wait (self, int msecs = ULONG_MAX)

Static Methods

  • int currentThreadId ()
  • msleep (int)
  • sleep (int)
  • yieldCurrentThread ()

Qt Signals

  • void started ()

Detailed Description

The QThread class provides a platform-independent way to managethreads.

A QThread object manages one thread of control within theprogram. QThreads begin executing in run(). By default, run() starts the event loop by callingexec_() and runs a Qt event loopinside the thread.

You can use worker objects by moving them to the thread usingQObject.moveToThread().

The code inside the Worker's slot would then execute in aseparate thread. However, you are free to connect the Worker'sslots to any signal, from any object, in any thread. It is safe toconnect signals and slots across different threads, thanks to amechanism called queuedconnections.

Another way to make code run in a separate thread, is tosubclass QThread and reimplement run(). For example:

In that example, the thread will exit after the run function hasreturned. There will not be any event loop running in the threadunless you call exec_().

It is important to remember that a QThread instance lives in the old thread thatinstantiated it, not in the new thread that calls run(). This means that all of QThread'squeued slots will execute in the old thread. Thus, a developer whowishes to invoke slots in the new thread must use the worker-objectapproach; new slots should not be implemented directly into asubclassed QThread.

When subclassing QThread, keep in mind that the constructorexecutes in the old thread while run() executes in the new thread. If amember variable is accessed from both functions, then the variableis accessed from two different threads. Check that it is safe to doso.

Note: Care must be taken when interacting with objectsacross different threads. See Synchronizing Threads fordetails.

Managing threads

QThread will notifiy you via a signal when the thread isstarted(), finished(), and terminated(), or you can use isFinished() and isRunning() to query the state of thethread.

You can stop the thread by calling exit() or quit(). In extreme cases, you may want toforcibly terminate() anexecuting thread. However, doing so is dangerous and discouraged.Please read the documentation for terminate() and setTerminationEnabled()for detailed information.

From Qt 4.8 onwards, it is possible to deallocate objects thatlive in a thread that has just ended, by connecting the finished() signal to QObject.deleteLater().

Use wait() to block the callingthread, until the other thread has finished execution (or until aspecified time has passed).

The static functions currentThreadId() and currentThread() return identifiersfor the currently executing thread. The former returns a platformspecific ID for the thread; the latter returns a QThreadpointer.

To choose the name that your thread will be given (as identifiedby the command ps -L on Linux, for example), you can callsetObjectName() beforestarting the thread. If you don't call setObjectName(), the name givento your thread will be the class name of the runtime type of yourthread object (for example, 'RenderThread' in the case ofthe Mandelbrot Example, asthat is the name of the QThread subclass). Note that this iscurrently not available with release builds on Windows.

QThread also provides static, platform independent sleepfunctions: sleep(), msleep(), and usleep() allow full second, millisecond,and microsecond resolution respectively.

Note:wait() and thesleep() functions should beunnecessary in general, since Qt is an event-driven framework.Instead of wait(), considerlistening for the finished()signal. Instead of the sleep()functions, consider using QTimer.

{Mandelbrot Example}, {Semaphores Example}, {Wait ConditionsExample}

Type Documentation

QThread.Priority

ConstantValueDescription
QThread.IdlePriority0scheduled only when no other threads arerunning.
QThread.LowestPriority1scheduled less often than LowPriority.
QThread.LowPriority2scheduled less often than NormalPriority.
QThread.NormalPriority3the default priority of the operatingsystem.
QThread.HighPriority4scheduled more often than NormalPriority.
QThread.HighestPriority5scheduled more often than HighPriority.
QThread.TimeCriticalPriority6scheduled as often as possible.
QThread.InheritPriority7use the same priority as the creating thread.This is the default.

Method Documentation

QThread.__init__ (self, QObjectparent = None)

The parent argument, if not None, causes self to be owned by Qt instead of PyQt.

Constructs a new QThread to manage anew thread. The parent takes ownership of the QThread. The thread does not begin executinguntil start() is called.

See alsostart().

QThread QThread.currentThread ()

Returns a pointer to a QThread whichmanages the currently executing thread.

int QThread.currentThreadId ()

int QThread.exec_ (self)

Enters the event loop and waits until exit() is called, returning the value thatwas passed to exit(). The valuereturned is 0 if exit() is calledvia quit().

This function is meant to be called from within run(). It is necessary to call this functionto start event handling.

See alsoquit() andexit().

QThread.exit (self, int returnCode = 0)

After calling this function, the thread leaves the event loopand returns from the call to QEventLoop.exec(). The QEventLoop.exec() function returnsreturnCode.

By convention, a returnCode of 0 means success, anynon-zero value indicates an error.

Note that unlike the C library function of the same name, thisfunction does return to the caller -- it is event processingthat stops.

No QEventLoops will be started anymore in this thread untilQThread.exec() has been calledagain. If the eventloop in QThread.exec() is not running then thenext call to QThread.exec() willalso return immediately.

See alsoquit() andQEventLoop.

int QThread.idealThreadCount ()

bool QThread.isFinished (self)

See alsoisRunning().

bool QThread.isRunning (self)

See alsoisFinished().

QThread.msleep (int)

See alsosleep() andusleep().

Priority QThread.priority (self)

Returns the priority for a running thread. If the thread is notrunning, this function returns InheritPriority.

This function was introduced in Qt 4.1.

See alsoPriority, setPriority(), and start().

QThread.quit (self)

See alsoexit() andQEventLoop.

QThread.run (self)

The starting point for the thread. After calling start(), the newly created thread callsthis function. The default implementation simply calls exec_().

You can reimplement this function to facilitate advanced threadmanagement. Returning from this method will end the execution ofthe thread.

See alsostart() andwait().

QThread.setPriority (self, Prioritypriority)

This function sets the priority for a running thread. Ifthe thread is not running, this function does nothing and returnsimmediately. Use start() to starta thread with a specific priority.

The priority argument can be any value in theQThread.Priority enum except forInheritPriorty.

The effect of the priority parameter is dependent on theoperating system's scheduling policy. In particular, thepriority will be ignored on systems that do not supportthread priorities (such as on Linux, seehttp://linux.die.net/man/2/sched_setscheduler for moredetails).

This function was introduced in Qt 4.1.

See alsoPriority, priority(), and start().

QThread.setStackSize (self, int stackSize)

See alsostackSize().

QThread.setTerminationEnabled (bool enabled = True)

Enables or disables termination of the current thread based onthe enabled parameter. The thread must have been started byQThread.

When enabled is false, termination is disabled. Futurecalls to QThread.terminate()will return immediately without effect. Instead, the termination isdeferred until termination is enabled.

When enabled is true, termination is enabled. Futurecalls to QThread.terminate()will terminate the thread normally. If termination has beendeferred (i.e. QThread.terminate() was called withtermination disabled), this function will terminate the callingthread immediately. Note that this function will not returnin this case.

See alsoterminate().

QThread.sleep (int)

See alsomsleep() andusleep().

int QThread.stackSize (self)

Returns the maximum stack size for the thread (if set withsetStackSize()); otherwisereturns zero.

See alsosetStackSize().

QThread.start (self, Prioritypriority = QThread.InheritPriority)

Qt Signal Thread

This method is also a Qt slot with the C++ signature void start(QThread::Priority = QThread.InheritPriority).

Begins execution of the thread by calling run(). The operating system will schedulethe thread according to the priority parameter. If thethread is already running, this function does nothing.

The effect of the priority parameter is dependent on theoperating system's scheduling policy. In particular, thepriority will be ignored on systems that do not supportthread priorities (such as on Linux, seehttp://linux.die.net/man/2/sched_setscheduler for moredetails).

See alsorun() andterminate().

QThread.terminate (self)

Terminates the execution of the thread. The thread may or maynot be terminated immediately, depending on the operating system'sscheduling policies. Listen for the terminated() signal, or use QThread.wait() after terminate(), to besure.

When the thread is terminated, all threads waiting for thethread to finish will be woken up.

Warning: This function is dangerous and its use isdiscouraged. The thread can be terminated at any point in its codepath. Threads can be terminated while modifying data. There is nochance for the thread to clean up after itself, unlock any heldmutexes, etc. In short, use this function only if absolutelynecessary.

Termination can be explicitly enabled or disabled by callingQThread.setTerminationEnabled().Calling this function while termination is disabled results in thetermination being deferred, until termination is re-enabled. Seethe documentation of QThread.setTerminationEnabled()for more information.

See alsosetTerminationEnabled().

QThread.usleep (int)

See alsosleep() andmsleep().

bool QThread.wait (self, int msecs = ULONG_MAX)

Qt Signals Slots Threads

  • The thread associated with this QThread object has finished execution (i.e. whenit returns from run()). Thisfunction will return true if the thread has finished. It alsoreturns true if the thread has not been started yet.
  • time milliseconds has elapsed. If time isULONG_MAX (the default), then the wait will never timeout (thethread must return from run()). Thisfunction will return false if the wait timed out.

This provides similar functionality to the POSIXpthread_join() function.

See alsosleep() andterminate().

QThread.yieldCurrentThread ()

Qt Signal Documentation

void finished ()

Qt signal slot multithreading

See alsostarted() andterminated().

void started ()

Qt Slot Parameter

See alsofinished()and terminated().

void terminated ()

See alsostarted() andfinished().

PyQt 4.11.4 for X11Copyright © Riverbank Computing Ltd and The Qt Company 2015Qt 4.8.7